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EXPERIMENTAL VERIFICATION 03’ THEODORSENIS -.

THEORETICAL

By

J23T-BOUNDARY CORRECTION FACTORS

George Van Schliestett

SUMMARY

Prandtl~s suggested use of a doubly infinite arrange-
ment of airfoil images in.the -theoretical determination
of wind-tunnel jet-boundary corrections was first adapked - ‘–
‘oy Glauert to the case of closed rectangular jets. More
recently, Theodorsen, using the same image arrangement but
a different analytical treatment, has extended this work-

.

to include not only closed but also partly closed and open
tunnels.

This report presents the results of mind-tunnel tests
conducted at the Georgia School of Technology for the pur-
pose of verifying the five cases analyzed by Theo~orsen.-
The tests wer~ conducted in a squar-6 iuliie”land the re-
sults constitute a satisfactory verification of his gener- - ‘“
al method of analysis, During the preparation of the data
two minor errors were discovered in the theory and these
have been rectified. .. -*;

INTRODUCTION

The primary study of wind-tunnel wall interference
for circular tunnels-was carried out by Prandtl at G8ttin-
gen University in 1919. In his l’Applications of Mod-

Ra~~~f-~renc* 1ern Hydrodynamics to ‘Aero-riau-ti-c-s “) he points
out that owing to the limited cross-sectional area of the
wind-tunnel air stream, the deflection of-the air behind
a model lifting surface is larger or smaller than it would
be in free air depending on whethe_r the” boynQary is open

●——— __ a —— =..

or closed, respectively. To accoutit for this defl=ctiori~
or downwask, Prandtl demonstrated tilat it was possible to
reproduce theoretically tune jet-boundary condition at the_.——
tes”t “section with the airfoil model in place. To- tiCCOlii-”-
plish this result he assumed that the tip vortices of-~h;
finite airfoil model were equivalent to a doublet at the ,.- .-—
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center of the test section, thfs assumption being justi-
fied for s“pan-tunnel width ratiqp up to 75 percent. Then,
to reproduce the ci>cw,l~r=fit-bo
duced two imaginary vortices -77#%7y ~“@At”rO-external to the jet
and in the plane of’ the airfoil d,oublet, symmetrically
spaced at such a distance from the jet center and having
such a sttiength as to provide the appropriate boundary
condition, For the open jet, the boundary condition is
that of zero normal pressure and for the closed jet, zero
normal velocity. The problem 3.s resolved into determining
the velocity at the center of the tunnel induced by the
imaginary vortices. For the closed tunnel this velocity
was found to be:

CLSV
w -.-—.

‘8Tr3”.

Hence the upward incliriation of the air stream due to tho
interference of the boundary is ,,

.
where C = -ITR2, R“’ being the radius of the jet. Thus
the corrections take the farm

in which the correction factors are

6 = 0.125 for the closed circular tunnel.

8 =-0.125 for the open circular tunnel.. .

Prandtl also suggested at this tine that for a jet of
rectangular cross section lithe calculation would have to
be made in such a manner that the airfoil was mirrored at
all the walls an infinite number of times, like a checker-
board,’[ Working along these lines in 1923, II, Glauert, of
Trinity College, Cambridge, contributed his development of
the theory for the interference of closed rectangular tun-
nels (reference 2).

● ✎

● “
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In 1931, Theodorsen of the National Advisory Committee
for Aeronautics published the results of an analysis of
rectangular-jet corrections covering not only the open and
closed cases %ut also certain forms of partly open aad
closed jets (fig. 2 and reference 3). His method of summa-
tion of the induced velocities differed from that used by
Glauert but his numerical results for the closed tunnel
were the same.

Glauert in 1932 presented an interpretation (refer-
ence 4) of the more accurate formulas developed by Rosen-
head in 1930 (reference 5) but confined his discussion to

‘iduplexf’the square and closed tunnels, and shortly there-
after published a general theorem on the subject (reference
6),which was as follows: ‘iThe interference on very “smaI1
aero,foils in an open tunnel of any shape is of the s.arne..
magnitude tmt oppoeite in sign as that on the same aero-
foil, rotated through a right a~gle, in a closed tunnel of”
the same shape.l[

Early in 1933 Theodorsen presented a study (reference
7) which took into consideration the actual span of the
airfoil for the case of the open rectangular jet. A month
later a paper by Rosenhead (reference 8), communicated by
Glauert, apyea”red, in which Theodorsents first mano~raph
(reference 3) was discussed and a different treatment of
the subject was presented. Rosenhead!s result for .Cas.e_IV,
i.e., vertical boundaries only, disagreed with that Qf .
Theodorsen. In this paper Rosenhead quotes a S$ill.rno.re.
general theorem. by Glauert to tke effect that ItThe inter-
ference on a very small aerofoil in a tunnel, whose bound-
aries are partly rigid walls and partly free surfaces, is
of the same magnitude but opposite in sign, as that on the
same aerofoil rotated througn a right angle in a ~unnel Qf
the same shape as the previous one but where ifg~d wai~a
replace free surfaces, and free surfaces replace rigid
walls.” .

The present report covers exclusiv5,1y* tile results of
airfoil tests made in a–~quare jet with all five of Theo-
dorsents boundary conditions reproduced for the purposti of
verifying his original theoretical analysis in so far as
this could be done using a jet of only one shale. The
five jet boundaries were as follows:

*-4n experimental investigation on a much broader scale has
meanwhile been carried on at Langley Field and the results
have been published. (See reference 9.)
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aCase I - Closed tunnel.
. . .

Case ‘ II - Tree ,jet.

;.“.’:“
Case 111 - Horizontal “boundari.-es; - - ‘- “

Case IV - Vertical boundaries.

Case V - One horizontal boundary.

,,,
“The author wishes to acknowledge the assistance of

Professor Montgomery Knight who suggested the investig.a-
.t”ion’’,andmade helpful comments and c.ritioisms, and Profes-
sor W. B. Johns to whom thanks are due for his assistance
In the analysis of the corrections for Cases IV and Y,

—
METHOD Ol!’TEST

*

.Force tests were made with all five boundary arrange-
ments on a 3 by 18 inch airfoil model ,(@an ~Q_perce’ht -of ●

tunn=l widti at a Reynolds Number of 1-59,000. In addi- .,
—.
tion, a 3 by 12 irich model. (span 40 percent of tunnti~
width) was tested for Cases I and II to observe the effect
of span. The basic tunnel had a 2* foot square open $et
(fig. 3)0 Horizontal pitot-static surveys made with each
boundary set-up showed that the maxiuum variation in dy-
namic pressure was with,in 1 percent- over the region occu-
pied by the wings.

The forces were measured by means of t-he wire-balance
system shown in figure 4._ The lift was measured directly
on the large balance as the sum of tile for.ce$ in the two
vertical lif-t wires. The drag was applied to a horizontal
mire, running upstream along the center line of the tunnel,
from which the force was transmitted to the vertical wire
attached to the drag balance.. The forces on the horizon-
tal and vertical wires were equalized by a 45° wi~e at
their juncture. Three lateral wires to the right re~trained
the cross-wind motion of the model, and a fourth skew vire
run’ni.ngdownward:, t-o the rear and toward the left was at-
tached to a counterweight to hold all wires taut. The va-
rious boundaries were set upby bolting plywood walls
around the jet as illustrated in figure 4, which shows the
closed-jet arrangement. &“
., ,,,
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The two airfoils, 3 by 18 inches and 3 hY 12 inches,
were made from a single 30-inch blank of laminated mahog- .
any, shaped to a Clark Y section with an initial tolerance
of M.003 inch in profile.. After <ormi~g tle profile,
this long airfoil was cut i_n.tothe t%o lengths. The large
wing had a fairly uniform twist of 0.5°, producing an er-
ror in the correction factor 8D amounting to 0.041 at
CL = 0.1, but rapidly decreasing to 0.002 at CL = 0.6.

—-.

A twist of 0.3° in the smaller wing caused errors of 0.021
at CL = 0.1 and 0.001 at __CL = Q.6. However, these er-
rors had a negligible effect on the results since correc-
tion factors near zero lift were not included in the aver-
age. — -.

As to precisioil of measurement, unusual care was_oh-
ser.ved in reading the balafi~es,

.—
since the results clepend-

ed o-h the accuracy of determining small differences be-
tween relatively large quantities.
possibility of

In order to reduce the
errors due to the changing of static tare,

this reading was checked before and after eat-h run. 3?ur-
th6r”accuracy was”obtained by making two fiuii~for each

..——

set-up. The upward inclination of tke air stream _=(c = ““
0.40) was acco~mted for by making ali tests-in both the
nornal and inverted positions End averaging the results?

It was found that the dynamic tare of-the frame and
wires varied with the angle of attack of the airfoil (fig-
ures 5 and 6). This tare was determined by means of a
dummy wing in the sam~ mosi~ion relative “to the frame as
the real wing, %ut inde~endently mounted; -Tne dummy wing
was moved through the same angle-of-attack range a~ the
test wing an-d the tare. of the frame and wires was thus ob-
tained.

The over-all error of the force Measurements was in
no case greater than 2 percent and most of the readings
were accurate to within 1 percent: ‘,

.—

,,

-. ““ .

● ✍

✎☛

.-
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RESULTS

,,

The following equations were used in reducing the
test data to coefficient form:

cL=J-
qs

~Dl = :2
.

,.

.,.

al = ag - aLo

The symbols used in presenting tbe results are as foil.ow~:

CL ,

~D1,

CD,

al ,

a,

ag ,

aLos

L,

Dl,

q9

s,

.
absolute lift coefficient;

.
absolute. drag coefficient with preliminary cor-
rections, not including jet-boundary effect.

absolute drag coefficient corrected for ~et-
boundary effect.

angle of attack! in degrees, measured from
zero lift.

angle of attack measured from zero lift and
corrected for jet-boundary effect.

geometric angle of attack measured with rfmpect
to the chord line.

geometria angle of attack of Eero lift.

measured lift.

measured drag with preliminary corrections, not
including jet-boundary effect.

mean dynamic pressure over span of model.

area of airfoil.

r
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Although the dynamic-pressure variation i_n the region
occupied by the model was in all cases less than 1 percent,
the mean ,value was found by integra_t_itigdynamic pressure

,..,,readirigs, observed at intervals across the airfoil- span for
each jet type. The coefficients were calculated on the
basis of the mean value. Th~se are presented in nondimen-
sional form in tables I to VII and figures 7 and 8.

The average drag coeff-icients. at zero ‘lift were found
to be 0.0239 and 0.0259 for aspect ratios 6 and 4 respec-”
tively. The several drag curves were then adjusted so
that all had the same minimum drag coefficient correspond-
ing to the foregoing values for the respscti,ve aspect ra-
tios as shown in figure 70 The curves of lift against
angle of attack were similarly adjusted so that each would
pass through a = O at CL = O,’ as showq in figure 8.
The effects of turbulence and “%locking were no% consi~ered
in these tests.

The results given in -this report’ are net quantities,
the tare of the frame and wires having been subtracted.

The next step was the application of the theoretical
jet-boundary corrections. These are of the form:—

Act = 8:CL (in radians)

= @cLy (in degrees)

ACD = 8 ; CL2

where c is the cross-sectional area of the jet,

and 8 is the correction factor from table VIII.—.

The drag curves first obtained aft,er ayplicatiog of
the “the–oYetical correction factore showed “Cases IV and V
to have large divergences frbm_tlie_ot&er ,cas~~ as may he
seen in figures’ 9 and 1,0. The test ;a”eth~d-=wasc%~c~e-d~ ‘-
but no possibilities fo{r.such ld,rge qrrorp- cou-l-ii66 ~]u~-.
The theory was studied again and analyzed w_ith a ““viewto

—— .-—+

accounting for these discrepancies. The sonrces of” th%
errors were discovered. and eliminated as des”cr~b_ed_later
in the discussion. The new fac”tor-s~r~ a~plied to get ““-
the correct drag and angle of attack values, which are
presented In tables I to VII and figures 9, 10, and 11.
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. . ..The drag for, Case 111 diverged slightly ‘from i~e oth-..
-e,~8s“but no error in the theory could be fou’nd. This mat-
ter. is discussed later.
..

The results of the t-t with one horizontal boundary
ab.ove.t.he jet and the test wi.t,hone horizontal boundary
below differ from the theoretical r,es,ultsby approximately
the same amount but in opposite directions, making- the av-
emage virtually correct. This” average is considered. to
represent Case V~. (See fig. 10.). . .

.,. Free-air conditions were ass~ed.to; be represented %y
the average corrected results of Chaes ,1, II, IV, and V.
(See figs. 9 and 10. )

,..

The experimental correction factors were then calcu-
lated from ~he equation8: , .

where 6D is the correction factor

ti~, . co.rrectio’n factor angle

ACI), difference between freo
actual test drag at the
coefficient

for drag

of attack

atr drag and
same lift

6

●

Aa, . differozlce between free-air angle of
attack and actual test angle of at-
tnck at the same lift coefficient

Both the theoretical and experimental dra~and angl~-
of-attack corrections are plotted against lift coefficient
in figures 12 through 23. From these figures the experi-
mental values of 6 for drag and angle of a’ttack were com-
puted for several lift coefficients and listed in table%
IX to XV. The average drag a;ld angle-of-attack factora
for each jet type were’ obtafned from these tables and are
recorded in tables XVI to XX. *

,,

, ●✎
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ANALYSIS 03’ DATA
-5.:. :..... . .. .... . .

,-

Ae previously mentioned, when the correction factors”
were applied to the net force test data’ lerge discrepan-
cies were found. for Cases IV and V. A thorough analysis .
of Theodorsents derivation revealed that in Case IV an
effe’ct of appreciable magnitude ‘had been omitted and that..
in Case V an arit’hmetica’l error was present.

.

.~ ,.. :. _. . . . . .+ , —-

1 In Case IV ‘of his report (referenca 3) the li—nk-on
IIthe entire effect .,.● ● **page 7 beginning [1 should read:

the entiro effect of all vertical rows of positive doub-
lets exteuding from x = mb to infinity is thus reprosout-
ed. by the effect of a positivo vortex row of strength
l’AL..——
b

located at x = (p +’~) ~, where ,p is the number

of the last doublet taken into account, and a ue~tive..——— --— .-—.—
vortex row of the same strength at x = infin~, Then in.——.——.—.——-————.—.. —————-— .-—
table S of reference 3: ~, .-

.,

s-hould be .... ., .... J...Y.. .. .

Correct values of 84 obtained by subtracting 0.250 are
t~bulatqd in ta%le XXI. ----

. . .

Since the s’&rfes converges rapidly, ‘the--correcti–on~.
factor ‘Qay also be ,found for varions width-heighi r~tios ‘
s 1 fr.am. . ,.

.. . ..,, -...> .. . . .
1. . 84 = ~ r (; ——-–-—. - ~’1 .;- .“”_,>’

Z sinh2 mfir 6),

Values of 84 computed from either of the alove equa-

tions agree with the results obtained by Von Karman “wit~ .
whom the writer has recently corresponded. These results

-

—*
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for Case IV are given in table XXI. It would thus appear
that both Theodorsents and Ilosenheadrs values for this
boundary condition are incorrect, particularly since thee
wind-tunnel tests agree with the corrected theoretical
values as shown in table XIX. Moreover, Glauert!s later
geueral theor:em must be called in question because it does
not hold for this case.

In Case V there is an arithmetical error in transfer-
ring from

This should

——. -

1 )“‘E”

+$ )
The corrected factors, which are one half the magnitude of
those In table I of reference 3, are given in table XXI
of this report. In this instance, the writerls results
are verified by toth Ton lIarman and Roserilead.

Referring to figures 9 to 11, we find that the drag
and angle of attack corrected for jet-boundary effect are
equal to free-air drag and angle of attack = percent max-
imum, except in Case 111, which is as much as 3 Percent
too high. It has been mentioned earlier in this report
that Case 111 does not show cloBe agreement between theo-
ry and experiment. Theory gives .8 =.Q.O.00. _but.e~eri-
MOnt gi.VOS 8D = - 0.021 and &a = - 0.069 (table ~vIII) s

It is interesting to note the general similarity in
the shape of CL against ACD and CL against AIX

curves for all cases (figs. 12 to 23). Divergence of the
experimental curves from those of the theory might possi-
bly be explained by the variable interferc#nce effect Of
the model-supporting frame upon the airfoil.

●

✎
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Tables XVI through XX show satisfactory agreamqnt b~-
tweon experimental and thgorot_ical tialues of 8 with the
oxco~tion of Case 111; as previously mentioii”ed. “Th-e-v-ari-

‘:-==ous theoretical correction factors for all five “cases mo-d-
ifi.od in accordance with the foregoing discussion are list-
ed in table XXI and are ““plotted against jet width-height
ratio %/h, in figure 2. The incorrect cur+es of both
Theodorsen and Rosenhead are included in this figure in-
ihe form of %roken lines.

CONCLUSIONS

On the basis of these tests the following conclusions
may be made:

,, ‘1.. Theodorsents analytical treatment of the image
systeps,in determining theoretical jet-boundary correc-
tions for square tunnels is satisfactory for ratios of
span ~Q. tu~nbl’width up to 0...60,the maximum used tn these
tests. . “

2. The tests showed that Tkeodorsonls corrections
for Cases IV and V were in error. The values determined
as a result of this investigation are for the_ square tun-
nel 5A = - 0.126 and & = - 0..O33.~

3. After application of .tho boundary-inter.ferenco
factors, corrected in Cases IV aad V, the l~ft against

-.

drag and lift against angle-of-attack curves are equiva-
lent to free-air conditions within +2 pe~cen%, e-xcept in”

. .

Case 111, which is 3,percent too large.

4. Theory gives 5= = 0.000, but experiment gives

8D = - 0.021 and &u = - 0.069, -for Case IiIo

5. A single jet boundary above an airfoil does Dot
produce the sane interference as a konndary .be>g~r. The.
ex~erimental average of the two conditions, ho’ivever~
agrees with the theory.

Dan:i,plGuggenheim School of Aeronautics,
Georgia School of Technology,

Atlanta, Ga., June 20, 1934.

.
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.094
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1.127
1.221
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TABLE I. FORCE TEST

Case I - Closed tunnel

Clark Y airfoil 3 %y 1“8 inches

! *ACD
CD1 !

-————

0.0239 i----0.0000
.0219 ; .0001
.0212 I .0003
.0235 .0012
.0316 .0026
.0441 1. .0046
.0604 ~ .00’72
.0817

I
.0104

.0956 .0121

————

CD
— .—.— ,.-
0.0239
.0220
.0215
.0247
.0342
.0487.
.0676
.0921
.1077 ,

—. —.

u~ I *AU c%
....— .—

0
1.05
2.10
4.25
6.45
8.75

11.15
13.75
15.25

-+
I
.—— —

o
.04
●O9
,17
.26
.35
● 44
.53
.57

0
1.09
2.19
4.42
6.71
9.10

11,59
14.28
15.82

r.
—~ “’

*Theoretical corrections.

————

CL
——.—

0
.141
.282
.422
.563
.704
.845
.986

1.127

TABLE 11. 3?ORCE TEST

Case I - Closed tunnel

Clark Y airfoil 3 by 12 inches
———— .—

~ %D;;:+~~;~”
.0244 ~ :0001
.0265 ~ .@oo4
.0329 .0010
.0438 I .0017
.0579 I .0027
.0752 .0039
.0959 .0053
.1218 I ,0069

—----- .——-- ,..-—.- ---- .—..,

CD
..;,---al

—.- ..-. ....-—-.

0.0259
.0245
.02159
.0339
.0455
.0606
.0791
.1012
.1287

—.—

—.—.- ..---— :

1.95
3.85
5.80
7.80
9.85

11.95
14.10
16.35

“——.—.

.. . . . . .— - _ ..— —.—
*~~ ~

.-
a

,.—,

--- -—

-t

—.. — .— —

o 0
.04 “1.99
.09 3.94
.13’ 5.93
.18 7.98
i22 10.07
.26 12.21
.31 I 14.41
“.35 “1 16.7’0

*Theoretical corrections.
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0
.094
.188
.375
.563
.?51.
.938

1.127
1.221
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TABLE 111. FORCE TEST

Case II - Free jet

Clark Y airfoil 3 by 18 inches

~Dt

0.0239
;0220
.0217
.0257
.0356
.0512
.0733
.1015
.1185

*ACD I CD
‘.—

0.0000
-.0001

~“O::;::
-.0003 .0214
-.0011 .0246
-.0026 .0330
-.0046 .0466
-.0072 .0661
-.0103 .0913
-.0121 i .1064

! *Aaal ~

T
—

o 0
1.15 -qo4
2.25 -.09
4.55 :.1’7
6.95 -.26
9.40 -.35

12.00 -.44
14.75

I
-.53

16.25 -.57

*Theoretical corrections.

TABLE IV, FORCE TEST

Case 11 - Free jet

Clark Y airfoil 3 by 12 inches

o
.141
.282
.422
.563
.704
.845
.986

1.127

CD! I *AcD

0.0259 0.0000
.0248 -.0001
.0277 -.0004
.0354 -.0010
.0468 -.0017
.0625 -.0027
.0827 -.0039
.1069 -.0053
.1356 -.0069

0.0259
.0247
.0273
.0344
.0451
.0598
.0788
.1016
.1287

a!
,—.

o
,2.00
4.05
6.10
8.20

10,30
12.46
14.65
17.00

*Aa

o
-ao~
-.09
-.13
-.18
-.22
-.26
-.31
-.35

a
.—— —

o
lqll
2.16
4.38
6.69
9.05

11~56
14.22
15.68

a

o
1.96
3.96
5.97
8.02

10.08
12.19
14.34
16.65

*Theoretical corrections.
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TA3LE V. FORCE TEST .

Case III - Horizontal boundaries

Clark Y airfoil 3 by 18 inches
-—...

CL
-..
0
.094
.188
.375
.563
.751
.938

1.12’7
1.221

L_—.——

0.0239 0.000
.0223 .000
.0219 .000
.0253 .000
.0338 .000
.0481 .000
.0681 .000
.0938 .000
.1097 .000

CD 1 IfJl *Aa
, !

3.023~ o
.0223 1.10
.0219 2.20
.0253 4.50
.0338 6.85
.0481 9.25
.0681

1

11.85
.0938 14.65
.1097 16.15

--—— —.. -.-—.
*Theoretical corrections

o
.094
.188
.375
.563
.751
938

1:127
1.221
—-——

*Theor

0.00
.00
.00
s 00
.00
.00
●OO
.00
.00

.. TABLE VI. FORCE TEST

Case IV - Vertical boundaries

Clark Y airfoil 3 by 18 inches
I

CD 1 *A CD CD I (-JT
.~

0.0239 0.0000 0.0239 1 0
.0222 -.0001 .0221

I

1.15
.0225 -.0003, .0222 2,30
.0266 -.0010 .0256 4.60
.0359 -.0023 .0336 7.00
.0513 -.0042 .0471 9.45
.0727 - -.0065 .0662 12.05
.0997 -.0094 .0903 14.90
.1152 -.0109 .1043 16;45

—-———. -—___ J_____ ______————— ___

tical corrections.

15

u

o
1.10
2.20
4.50
6.85
9.25

11.85
14.65
16.15

——-- -——

1“
*ACL ‘ a
——— ———

0 0
-.04 1.11
-.08 2.22
-.16 4.44
-.24 6.?’6
-*32 9.13
-.40 11.65
-.48 14.42
-.52 15.93

-——-—— ————— .-
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TABLE VII(a). FORCE TEST

Case V - Upper horizontal boundary

Clark Y airfoil 3 by 18 inches

o
.094
.188
.375
.563
.751
.938

1.127
1.221

0,0239
.0225
.0224
.0266
.0362
.0520
.0717
.0968
.1135

0.0000
.0000

-.0001
-.0005
-.0012
-.0021
-.0033
-.0048
-.0056

L—.—.-— —--— ——--——.—

*Theoretical corrections.

——

c1

0
.094
.laa
.375
.563
.751
.938

1.127
1.221
--——-

*Theor

0.0239 0 0
.0225 1.10 -.02
.0223 2.20 -.04
.0261 4.50 -.08
.0350 6.85 -.12
.0499 9.25 -.16
.0684 11.75 -.20
.0920 14.40 -.24
.1079 15.90 -.26

TABLE VII(b). FORCE TEST

Case V - Lower horizontal boundary

Clark Y airfoil 3 by 18 inches

0.0239
.0221
.0218
.0251
.0341
.0483
.0682
.0942
.1101

0.0000
.0000

-.0001
-.0005
-“.0012
-.0021
-.0033
--0048
-.0056

——_____________ ..-,

tical corrections.

0.0239
.0221
.0217
.0246
.0329
.0462
.0649
.0894
.1045

al

o
‘1.15
2.25
4.60
“6.90
9.35

11.85
14.60
16.15
.——. —

*Aa

o
-.02
-.04
-.08
-.12
-?16
-.20
-.24
-.26

16

,
—

a

o
1.08
2.16
4.42
6.73
9*CI9

11.55
14.16
15.64

—————

a

0
1.13
2.21
4.52
6.?8
S.19

11.65
14.36
15.89

,_________



o
.094
,laa
375

:563
.751
.938

1.127
1.221
.—— -

N. A, C,A. Technical Note No. 506

TABLE VII(c), FORCE TEST

Case V - One horizontal boundary

Average of tables VII(a) and VII(3)

Clark Y airfoil 3 by 18 inches

0.0239
.0223
.0221
.0259
00351
00497
.0695
.0956
.1118

.—-.. _-

*AcD

0.0000
.0000

-.0001
-.0005
-.0012
-.0021
-.0033
-.oo48
-.0056

.--.—- -—

CD

0.0239
.0223
.0220
.0254
00339
.0476
.0662
.0908
.1062

-—.—--—-

.——
I*

al Aa

0
1.10
2.20
4.55
6.90
9.30

11.80
14.50
16.05”
——-——

*Theoretical corrections.

TABLE VIII. THEORETICAL 6 “

(Ta%le I in reference 3)

r

o—
.125
.25
.50
625

:75
1.00
1.50
2.00
4.00
Cu

—.

Ce
1.0”55

523
:263
.213
.175
.138
.120
.137
.262
w

6=
..—

-0;;24
-.262
-.137
-,122
-.120
-.137
-.197
-.262
--.524
.m

83
—.— —-

-0;;24
-.262
-.127
-.089
-.056
.000
.077
.126
.262
m

84
—.. —

m
1.051
.524
.262
.210
.161
.124
.054

-*o~2
-.276
..=

.-— ——

0
-.02
-.04
-.08
-.12
-.16
-.20
-.24
-.26

————

—
a=

-.—.
-m

-1.050
-.524
-.262
-.208
-.173
-.127
-.056
.000
.126
Cn

.-——. ——

17

—.

a
.— -.—

0
1.08
2,16
4.47
6.7’8
9.14

11.60
14.26
15.79

-.———
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TABLE IX. EXPERIMENTAL 8

Case I - Closed tunnel

Clark Y airfoil 3 by 18 inches

—— —.. —.
CL

0,1
.2
.3
.4
.5
.6
.7
.8
.9

1.0
1.1
1.2

Average

A CD

(0*0002)
( ,0007)
( 60013)

.0016

.0019

.0023

.0031

.0043

.0058

.0075

.0093

.0108

—————

6D

T0.336)—
( .293)
( .243)

,168
.128
.109
.106
.113
.121
126
:129
.126

.125

Au
— ———
0.05
.09
.14
.20
.26
.30
.34
.38
.43
.49
.54
.56

18

ti~
—

0.146
132

—
.
.13’7
.146
.152
.146
.142
.139
140

:143
.144
.137

~142
._—

quantities in parentheses not averaged because of large
discrepanci~s. ACD from figure 12. Aa from figure 19.

.

.
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.

ACD
8D = ‘—

: CL=
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TABLE X. EXPERIIIENTAL 8

Case I - Closed tunnel

19

Clark Y airfoil 3 - ‘- - -

CL
—

0.1
.2
.3
.4
5● .
6

:7
.8
.9

1.0
1.1

Average

ACD

(0.0001)
( .0003)

.0006

.0011

.0014

.0016

.0022

.0032

.0044

.0057

.0066

tD
—..
(0.252)
( .189)

.168

.174

.142

.113

.114

.126

.137

.144

.138

.140

Act

(0.02)
.Q6
.11
● 14
.18
.21
.23
.24
.26
.27
.31

(0.088)
.132 ●

.161
154

:158
.154
.144
.132
.127
.119
120●

.140
—.

Quantities in parentheses not averaged because of large
discrepancies. ,ACD from figure 1S. Act from figure 19.



.. ——. —

CL

0.1
.2
.3
.4
.5
6

:7
.8
.9

1.0
1.1
1.2

Averags

N.A. C.A. Technical Note No. 506

TABLE XI, EXP3!RIEEN!I!AL&

Case 11 - Free jet

Clark Y airfoil 3 by 18 inches

20

—-. —
ACD

(0.0003)
.0004
.0007
.0012
.0019
.0026
.0033
.0044
.0060
.0082
.0101
.0117

?D

(0.503)
.168
.131
.126
.128
,121
.113
.116
.125
.138
.140
.137

-.132
—— .—

(0.05)
( .07)
( .10)
( .13)
( .18)

.23

.27

.32

.38
..43
.45
●45

I

————

(0.142)
( .103)
( .097)
( .095)
( .106)

112
:113
.117
.124
.126
.120
.110

-.117 1-

Quantities in parentheses not averaged because of large
discrepancies. ACD from figure 14. Aa from figure 20,



.

.

CL
—. —-—. —

0.1
.2
.3
.4
.5
.6
.7
.8
.9

1.0
1.1

Average
— .— .. .-

IT,A. C.A. Technical Fete No. 506

TA3LX XII. EXPXRIHEIUCAL a

Case II - Yree jet

2?1

Clark Y airfoil 3

ACD
8D=-

S I-JLa
c

—-.-—.- — —-, .-.

ACD
—-.—— —.
(0.0001)
( .0003)
( .000’7)
( .0012)

.0014

.0016

.0023

.0033

.0045

.005’7

.0066

-. . ____

8D
.—.. -—
(0.252)
( .189)
( .19’7)
( .190)

.142

.113

.119
130

:141
● 144
.138

-.131
,—— — ..

%y 12 inches

Act
— .—— —
(0.04)

.07

.08

( :::)
.20
.22
.24
.26
.28
● 31

.
6~

—-— .—..— _,-,— _
(0.176)

.154

.117

.154
( .167)

.146

.138

.132

.127

.123

.124

-.137

Quantities in parentheses not averaged because of large
discrepancies. ACD from figure 15. Aa from figure 20.



.

.

Acn

CL

0.1
.2
.3
.4
.5
.6
.7
.8
.9”

1.0
1.1
~m~

Average

.-
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TABLE XIII. EXPERIMENTAL a

Case 111 - Horizontal boundaries

Clark Y airfoil 3 by 18 inches

ACD

(0.0002)
( .0001)

.0001

.0002

.0002

.0001

.0002

.0005

.0010

.0015

.0021

.0028

6D

(0.336 )-”
( .084)

.019

.042

.013

.005

.007

.013

.021

.025
,o~g

.033

-.021

Aa
——
(0.00)
( .02)

.05

.08
10

:11
13

:16
.22
30
:35
.34

22

8a—-. — ——.... .
(0.000)
( .029)

.043
,“059
.073
.054
.054
,059
.@72
.088
.093
.083

-.069

.-

GJuantities in parentheses not averaged lacause of large
discrepancies. A CD from figure 16. Aa from figure 21,

.-
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TABLE XIV. EXPERIMENTAL 8

Case IV - Vertical boundaries

Clark Y airfoil 3 by 18 inches

ACD
8J)= ~-—–

~ cL2
,.

CL
...

0.1
.2
.3
.4
.5
.6
.7
.8
.9

1.0
1.1
1.2

Average
—-

ACD

(0.0001)
( .0007)
( .0012)
( .0016

.0020

.0024

.0030

.0041

.0054

.0067

.0086
( .0085)

(0.168)
( .293)
( .224)
( .168)

● 134
.112
.103
.108
.112
.113
.111

( .099)

-.113
—

Aa

(0.05)
( .12)

.14

.18

.23

.28

.32

.36
42

;50
.58
.61

— —.

~a
—

(0.147)
( .176)

● 137
,132
.135
.137
.134
.132
● 137
,147
● 155
.149

-*139

—

Quantities in parentheses not averaged because of large
discrepancies. ACD from figure 17. Aa from figure 22.



.

.

—. —

CL

0.1
.2
.3
.4
.5
.6
.7
.8
.9

1.0
1.1
1.2

Average
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TABLE XV, EXPERIMEHTAL &

Case V -

Clark Y

ACD

(0.0002)
( .0003)

.0005

.0009

.0012

.0016
●0021
.0026
.0030
.0033
.0038
.0048

24

One horizontal boundary

airfoil 3 by 18 inches

6D

(0.336)
( .126)

.093

.095

.081

.075

.075

.068

.062

.055
%053
.056

-.071

Act

(0.04)
( .06)
( .05)
( .04)
( 007)

.09

.11

.15

.18

.23

.27

.28

t$~

-(0.117)
( .088)
( .049)
( .029)
( .041)

.044

.046

.055

.059

.067

.072

.068
-.059

Quantities in parentheses not averaged because of large
discrepancies;. ACD from figure 18. Aa from figure 23.

TABLE XVI. CORRECTION FACTORS

Case I - Square closed tunnel

3 by 12 inch airfoil 3 by 18 inch airfoil

8D s~ 8D ~a

Theoretical 0.138 0.138 0.138 0.138
Experimental .140 ● 140 .125 .142
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TABLE XVII, CORRECTIOIT FACTORS

Caee II - Square open jet

3 %y 12 inch airfoil 3 hy 18 inch airfoil

6~ &a
I

8D aa

Theoretical -0.137 -0.137 -0.137 -0.13’7
Experimental -.131 -.137 -.132 -.117
.—

TABLE XVIII. CORRECTION FACTORS

Case 111 - Square jet with horizontal boundaries

TABLX XIX. CORRECTION FACTORS

Case IV - Square jet with vertical boundaries

Z by 18 inch airfoil

I
I 8D 7 —aa

Theoretical I -0.126 I -0.126Xxnerimental -.113 -,139

TABLE XX. CORRECTION YACTORS

Case T - Square jet with one horizontal boundary

3 by 18 inch airfoil
—

t.;;;~

I
a~

— ...--———
Theoretical -0.063
Experimental ! -.059

__-——.—— _J_..—~_-_——..— —

.
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.

.

TABLE XXI. THEORETICAL 8

(With & and 85 of table I, reference 3, corrected)

63=2 r.; ~-l)n cosh nnr ~ ~-~ horizontal boundaries
\ 1 sinh2 nfir 12 )

& =:+-- inh: ‘-- ~)+:soth(P’++) ~r - 0.25
nn r -.

vertical houndariee

r

0
.125
.250
.50
.s25
.75

1.00
1.50
2.00
4.00
Cn

1

-9 _:–-
1.055 -0.524

● 523 -.252
.263 -.137
.213 -.122
.176 -.120
.138 -.137
.120 -.197
137 -.262

:262 -.524
a -m

.Cn

-0.524
-.262
-.127
-.089
-.056
.000
.077
.126
.262
m

L

w
0.801
.274
.012

-.040
--.089
-.126
-.196
-,262
-.526
.m

boundary .-.—

86

-co

-0.525
—

-.262
-.131
-.104
-.086
-.063
-.028
.000
.063
m
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Figure 5.- Dynamic tare forces. Six-component
balance frame.CaseI .Tunnel closed,

Airfoil in normal test position.
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Figure 6.- Dynamic tareforces.Six-component ~“
balance frame.Case1.Tunnel closed. in

Airfoil in inverted test position. ‘m
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Figure 9.–Lift -drag polars corrected for jet-boundary effect.
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Case II. Free jet. C = S00 sq..in.
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